An approach to joint analysis of longitudinal measurements and competing risks failure time data.

نویسندگان

  • Robert M Elashoff
  • Gang Li
  • Ning Li
چکیده

Joint analysis of longitudinal measurements and survival data has received much attention in recent years. However, previous work has primarily focused on a single failure type for the event time. In this paper we consider joint modelling of repeated measurements and competing risks failure time data to allow for more than one distinct failure type in the survival endpoint which occurs frequently in clinical trials. Our model uses latent random variables and common covariates to link together the sub-models for the longitudinal measurements and competing risks failure time data, respectively. An EM-based algorithm is derived to obtain the parameter estimates, and a profile likelihood method is proposed to estimate their standard errors. Our method enables one to make joint inference on multiple outcomes which is often necessary in analyses of clinical trials. Furthermore, joint analysis has several advantages compared with separate analysis of either the longitudinal data or competing risks survival data. By modelling the event time, the analysis of longitudinal measurements is adjusted to allow for non-ignorable missing data due to informative dropout, which cannot be appropriately handled by the standard linear mixed effects models alone. In addition, the joint model utilizes information from both outcomes, and could be substantially more efficient than the separate analysis of the competing risk survival data as shown in our simulation study. The performance of our method is evaluated and compared with separate analyses using both simulated data and a clinical trial for the scleroderma lung disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects.

This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance-covariance matrix of the multivariate latent random effects based...

متن کامل

A joint model for longitudinal measurements and survival data in the presence of multiple failure types.

In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing...

متن کامل

A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements.

This article proposes a joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model with t-distributed measurement errors for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the survival outcome, and a regression sub-model for the variance-covariance matrix of the multivariate latent ra...

متن کامل

Parametric Estimation in a Recurrent Competing Risks Model

A resource-efficient approach to making inferences about the distributional properties of the failure times in a competing risks setting is presented. Efficiency is gained by observing recurrences of the compet- ing risks over a random monitoring period. The resulting model is called the recurrent competing risks model (RCRM) and is coupled with two repair strategies whenever the system fails. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics in medicine

دوره 26 14  شماره 

صفحات  -

تاریخ انتشار 2007